P-glycoprotein Drug Interactions

For the most current information on this topic, please see Drug Interactions: Cytochrome P450 (CYP), P-glycoprotein, and More.

Full update June 2020

Pharmacokinetics can be affected by drug transporters (e.g., P-glycoprotein, breast cancer resistance protein [BCRP], multidrug and toxin excluders [MATEs], organic anion transporting polypeptides [OATPs]).  We are still learning about the significance of these transporters on pharmacokinetics.  Most of the available data is related to P-glycoprotein (P-gp; multidrug resistance protein 1 [MDR1]). P-gp is a drug efflux pump found in the gut, liver, kidney, blood-brain barrier, and cancer cells.1 It pumps drugs out of cells and into the gut, bile, and/or urine for excretion.1,6 The table below lists P-gp substrates, inhibitors, and inducers, but is not comprehensive. Inhibitors may increase levels of P-gp substrates, and inducers may decrease levels of P-gp substrates.1 For most interactions, CYP450 enzyme inhibition or induction is also involved, and many P-glycoprotein substrates are also CYP3A4 substrates (P-gp helps prevent saturation of CYP3A46), so the contribution of P-gp inhibition/induction vs CYP450 inhibition/induction can be difficult to discern.3,17,51 Furthermore, interactions involving P-gp alone are not as often significant.51 In the table that follows, italics denote those drugs involved in a p-glycoprotein drug interaction that is clinically evident and/or is associated with a strong warning or recommendation for specific intervention (e.g., specific dose alteration, laboratory monitoring, avoidance). Keep in mind inhibition potency in patients is not well defined, and is unknown for many inhibitors. It is prudent to use any combination with potential for interaction with caution (e.g., conservative dosing, appropriate monitoring), especially those involving drugs with a narrow therapeutic index and/or potentially serious dose-dependent side effects (e.g., chemotherapy, cardiac medications, anticonvulsants). For drugs or drug combinations that are both substrates and inhibitors, the net effect is difficult to predict.

--In addition to the references cited below, product labeling was also consulted.--

--------SUBSTRATES--------

Abemaciclib
Acalabrutinib
Ado-trastuzumab emtansine
Afatinib
Alectinib (metabolite
Aliskiren
Ambrisentan
Amitriptyline
Apalutamide
Apixaban
Apremilast
Aripiprazole
Armodafinil
Atazanavir
Atorvastatin

 

Azithromycin
Belinostat
Benznidazole
Betrixaban
Bictegravir
Binimetinib
Brentuximab vedotin
Brigatinib
Canagliflozin
Carfilzomib
Ceritinib
Cimetidine
Citalopram
Clobazam

Clopidogrel
Cobimetinib
Colchicine
Crizotinib
Cyclosporine
Dabigatran
Dabrafenib
Daclatasvir
Dacomitinib
Dactinomycin
Dapagliflozin
Darolutamide
Darunavir
Dasabuvir
Daunorubicin

Deflazacort
Delafloxacin
Desipramine
Dexamethasone
Digoxin
Diltiazem
Docetaxel
Dolutegravir
Domperidone
Doxepin
Doxorubicin
Duvelisib
Edoxaban

Elagolix
Elbasvir
Eliglustat
Empagliflozin
Encorafenib
Enfortumab vedotin
Erlotinib
Ertugliflozin
Erythromycin
Etoposide
Everolimus
Fentanyl

Fexofenadine
Fidaxomicin
Fluoxetine
Fluticasone
Fluvoxamine
Fosamprenavir
Gilteritinib
Glasdegib
Glecaprevir
Glyburide
Grazoprevir
Idelalisib
Imatinib
Imipramine
Indacaterol
Indinavir
Irinotecan
Itraconazole
Ivermectin
Ivosidenib
Ixazomib
Lapatinib

Larotrectinib
Ledipasvir
Lefamulin
Lemborexant
Lenvatinib
Letermovir
Levomilnacipran
Linagliptin
Loperamide
Lopinavir
Loratadine
Lovastatin
Maraviroc
Methadone
Methotrexate
Methylprednisolone
Mirabegron
Mitoxantrone
Morphine
Nadolol
Naldemedine
Naloxegol
Nelfinavir

Neratinib
Netupitant
(metabolite)
Nicardipine
Nilotinib
Nintedanib
Niraparib
Nortriptyline
Olanzapine
Olaparib
Omadacycline
Ondansetron
Opicapone
Osimertinib
Oxycodone
Paclitaxel
Paliperidone
Panobinostat
Paroxetine
Pasireotide
Pazopanib
Pemigatinib
Perphenazine
Phenobarbital
Pibrentasvir
Pitavastatin
Polatuzumab
Pomalidomide
Ponatinib
Posaconazole

 

Pravastatin
Prednisone
Propafenone
Propranolol
Quinidine
Quinine
Ranitidine
Ranolazine
Revefenacin
Rifaximin
Rimegepant
Riociguat
Risperidone
Ritonavir
Rivaroxaban
Romidepsin
Rosuvastatin
Saquinavir
Saxagliptin
Selexipag
Selpercatinib
Selumetinib
Silodosin
Simvastatin
Sirolimus
Sitagliptin
Sofosbuvir
Tacrolimus

Talzenna
Tazemetostat
Temsirolimus
Teniposide
Tenofovir
Testosterone
Ticagrelor
Tipranavir
Tolvaptan
Topiramate
Topotecan
Trametinib
Trimipramine
Tucatinib
Ubrogepant
Umeclidinium
Uridine triacetate
Velpatasvir
Vemurafenib
Venetoclax
Venlafaxine
Verapamil
Viekira Pak
Vilanterol
Vinblastine
Vincristine
Vinorelbine
Voxilaprevir
Zanubrutinib

 

----INHIBITORS----

INDUCERS

Abemaciclib
Alectinib
Alpelisib
Amiodarone
(moderate or strong inhibitor)
Amitriptyline
Atazanavir
Atorvastatin
Avapritinib
Azithromycin
Cabozantinib
Canagliflozin
(weak inhibitor)
Capmatinib
Captopril
Carfilzomib
Cariprazine
Carvedilol
Chloroquine
Cimetidine
Clarithromycin**
(strong inhibitor)
Clomipramine
Cobicistat
Conivaptan*
Crizotinib*
Cyclosporine*
(strong inhibitor)
Daclatasvir
Dacomitinib
Darunavir
Desipramine

Diclofenac
Diltiazem
*
Dipyridamole
Doxepin
Dronedarone
*
(strong inhibitor)
Duloxetine
Eliglustat
Elagolix
Encorafenib
Enzalutamide
Erdafitinib
Erythromycin
*
(strong inhibitor)
Esomeprazole
Etravirine
Felodipine
Flibanserin
Fluphenazine
Fostamatinib
Gentamicin
Ginkgo biloba
Glasdegib
Glecaprevir
Goldenseal
Grapefruit**
Green tea (catechins)
Haloperidol
Ibrutinib
Ibuprofen
Iloperidone
(weak inhibitor)
Imatinib

Imipramine
Indinavir**
Indomethacin
Isavuconazonium (weak inhibitor)
Istradefylline
Itraconazole**
Ivacaftor
(weak inhibitor)
Ivermectin
Ivosidenib
Ketoconazole**
(strong inhibitor)
Lansoprazole
Lapatinib
Lasmiditan
Ledipasvir

Letermovir
Linagliptin
Lomitapide
Lopinavir/Ritonavir**
Lovastatin
Lumacaftor
Maraviroc
Midostaurin
Mifepristone
Mirabegron
Naproxen
Nefazodone**
Nelfinavir**
Neratinib
Netupitant*
Nicardipine

Nifedipine
Nilotinib
Olanzapine
Olaparib
Omeprazole
Osimertinib
Paliperidone
Paroxetine
Pibrentasvir
Pirfenidone
(weak inhibitor)
Ponatinib
Posaconazole
**
Progesterone
Propafenone
Quinidine
(strong inhibitor)
Quinine
Rabeprazole
Ranolazine
Ripretinib
Risperidone
Ritonavir
**
Rolapitant
Rucaparib
Saquinavir/ritonavir
**
Sarecycline
Selpercatinib
Sertraline
Simvastatin
Sirolimus
Sorafenib

Spironolactone
Stiripentol
Suvorexant
Tacrolimus
Tamoxifen
Telmisartan
Temsirolimus
Testosterone
Tetracycline
Thioridazine
Ticagrelor
Trifluoperazine
Trimethoprim
Trimipramine
Tipranavir/ritonavir
**
Tolvaptan
Tucatinib
Ulipristal
Uridine triacetate
Valbenazine
Varenicline
Velpatasvir
Vemurafenib
Venetoclax
Verapamil
*
(strong inhibitor)
Vilazodone
Vorapaxar
(weak inhibitor)
Voriconazole
(strong inhibitor)
Voxilaprevir

Apalutamide
Atazanavir
Carbamazepine
(strong inducer)
Dexamethasone
Efavirenz
Etravirine
Fosamprenavir
Ivacaftor
Lumacaftor
Phenobarbital
(strong inducer)
Phenytoin
(strong inducer)
Rifabutin
(strong inducer)
Rifampin
(strong inducer)
St. John’s wort
(strong inducer
Tipranavir
Venlafaxine

*Denotes moderate CYP3A inhibitors. **Denotes strong CYP3A inhibitors.

NOTE: Inhibitor/inducer strength indicated if available.

Project Leader in preparation of this clinical resource (360629): Melanie Cupp, Pharm.D., BCPS

References

  1. Bailey DG. Fruit juice inhibition of uptake transport: a new type of food-drug interaction. Br J Clin Pharmacol 2010;70:645-55.
  2. Saruwatari J, Yasui-Furukori N, Niioka T, et al. Different effects of the selective serotonin reuptake inhibitors fluvoxamine, paroxetine, and sertraline on the pharmacokinetics of fexofenadine in healthy volunteers. J Clin Psychopharmacol 2012;32:195-9 [abstract].
  3. U.S. Food and Drug Administration. Drug development and drug interactions: table of substrates, inhibitors and inducers. March 10, 2020. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers. (Accessed July 15, 2020).
  4. O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and p-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012;165:289-312.
  5. Juurlink DN, Mamdani M, Kopp A, et al. A population-based assessment of the potential interaction between serotonin-specific reuptake inhibitors and digoxin. Br J Clin Pharmacol 2005;59:102-7.
  6. Horn JR, Hansten P. Drug transporters: the final frontier for drug interactions. Pharmacy Times December 1, 2008. http://www.pharmacytimes.com/publications/issue/2008/2008-12/2008-12-8474. (Accessed May 17, 2020).
  7. Horn JR, Hansten PD. Drug interactions with digoxin: the role of p-glycoprotein. Pharmacy Times October 2004. http://www.hanstenandhorn.com/hh-article10-04.pdf. (Accessed May 17, 2020).
  8. Zhang L. CDER, FDA. Transporter-mediated drug-drug interactions (DDIs). March 17, 2010. http://www.fda.gov/downloads/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm207267.pdf. (Accessed May 4, 2020).
  9. Tufan A, Dede DS, Cavus S, et al. Rhabdomyolysis in a patient treated with colchicine and atorvastatin. Ann Pharmacother 2006;40:1466-9.
  10. Levin GM. P-glycoprotein: why this drug transporter may be clinically important. Curr Psychiatr 2012;11:38-40.
  11. Matheny CJ, Lamb MW, Brouwer KR, Pollack GM. Pharmacokinetic and pharmacodynamic implications of p-glycoprotein modulation. Pharmacotherapy 2001;21:778-96.
  12. Vandenbossche J, Huisman M, Xu Y, et al. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol 2010;62:401-12.
  13. Clinical Pharmacology powered by ClinicalKey. Tampa (FL): Elsevier. 2020. http://www.clinicalkey.com. (Accessed February 23, 2020).
  14. Jellin JM, Gregory PJ, et al. Natural Medicines. www.naturalmedicines.com. Accessed on February 26, 2020. © 2001-2020 by Therapeutic Research Center. Terms of Use: https://naturalmedicines.therapeuticresearch.com/terms-of-use.aspx.
  15. Weiss J, Dormann SM, Martin-Facklam M, et al. Inhibition of p-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 2003;305:197-204.
  16. Atiq F, Broers AE, Andrews LM, et al. A clinically relevant pharmacokinetic interaction between cyclosporine and imatinib. Eur J Clin Pharmacol 2016;72:719-23.
  17. Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev 2003;55:53-81.
  18. Wessler JD, Grip LT, Mendell J, Giugliano RP. The p-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol 2013;61:2495-502.
  19. Misaka S, Miyazaki N, Yatabe MS, et al. Pharmacokinetic and pharmacodynamic interaction of nadolol with itraconazole, rifampicin and grapefruit juice in healthy volunteers. J Clin Pharmacol 2013;53:738-45 [abstract].
  20. Frost C, Shenker A, Gandhi MD, et al. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br J Clin Pharmacol 2014;78:877-85.
  21. Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001;45:3445-50.
  22. Lopez Brunso M, Toro Blanch C, Sais Girona E, et al. Probable drug-drug interaction between erlotinib and amiodarone causes severe neurotoxicity in a patient with advanced lung cancer. Anticancer Drugs 2018;29:380-3 [abstract].
  23. Hammann F, Gotta V, Conen K, et al. Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity. Br J Clin Pharmacol 2017;83:927-30.
  24. Saiz-Rodriguez M, Belmonte C, Roman M, et al. Effect of ABCB1 C3435T polymorphism on pharmacokinetics of antipsychotics and antidepressants. Basic Clin Pharmacol Toxicol 2018;123:474-85.
  25. Robillard KR, Chan GNY, Zhang G, et al. Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother 2014;58:1713-22.
  26. Sugie M, Asakura E, Zhao YL, et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother 2004;48:809-14.
  27. Taur JS, Rodriguez-Proteau R. Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models. Xenobiotica 2008;38:1536-50 [abstract].
  28. Wang ZY, Chen M, Zhu LL. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag 2015;11:449-67.
  29. Li W, Zeng S, Yu LS, Zhou Q. Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag 2013;9:259-71.
  30. Boddu SP, Yamsani MR, Potharaju S, et al. Influence of grapefruit juice on the pharmacokinetics of diltiazem in Wistar rats upon single and multiple dosage regimens. Pharmazie 2009;64:525-31.
  31. Borst P, Schinkel AH. P-glycoprotein ABCB1: a major player in drug handling by mammals. J Clin Invest 2013;123:4131-3.
  32. University of Liverpool. HIV drug interactions. https://www.hiv-druginteractions.org/checker. (Accessed March 14, 2020).
  33. Lacher SE, Skagen K, Veit J, et al. P-glycoprotein transport of neurotoxic pesticides. J Pharmacol Exp Ther 2015;355:99-107.
  34. Agarwal S, Pal D, Mitra AK. Both P-gp and MRP2 mediate transport of lopinavir, a protease inhibitor. Int J Pharm 2007;339:139-47.
  35. Crowe A, Tan AM. Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol 2012;260:294-302.
  36. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, et al. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. PLoS One 2014;9:e88516.
  37. Misaka S, Knop J, Singer K, et al. The nonmetabolized B-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and p-glycoprotein, but not of OATP1B1 and OATP1B3. Mol Pharm 2016;13:512-9 [abstract].
  38. Subramanian N, Condic-Jurkic K, Mark AE, O’Mara ML. Identification of possible binding sites for morphine and nicardipine on the multidrug transporter p-glycoprotein using umbrella sampling techniques. J Chem Inf Model 2015;55:1202-17 [abstract].
  39. Moons T, de Roo M, Claes S, Dom G. Relationship between p-glycoprotein and second-generation antipsychotics. Pharmacogenomics 2011;12:1193-211.
  40. El Ela AA, Hartter S, Schmitt U, et al. Identification of p-glycoprotein substrates and inhibitors among psychoactive compounds—implications for pharmacokinetics of selected substrates. J Pharm Pharmacol 2004;56:967-75 [abstract].
  41. Keangpraphun T, Towanabut S, Chinvarun Y, Kijsanayotin P. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J Clin Pharm Ther 2015;40:315-9.
  42. Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of p-glycoprotein (p-gp) inducers on exposure of p-gp substates: review of clinical drug-drug interaction studies. Clin Pharmacokinet 2020;59:699-714.
  43. Luna-Tortos C, Rambeck B, Jurgens UH, Loscher W. The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res 2009;26:2464-70 [abstract].
  44. Yano R, Tani D, Watanabe K, et al. Evaluation of potential interaction between vinorelbine and clarithromycin. Ann Pharmacother 2009;43:453-8 [abstract].
  45. Bashir H, Motl S, Metzger ML, et al. Itraconazole-enhanced chemotherapy toxicity in a patient with Hodgkin lymphoma. J Pediatr Hematol Oncol 2006;28:33-5.
  46. Wang JS, Zhu HJ, Markowitz JS, et al. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter p-glycoprotein. Psychopharmacology (Berl) 2006;187:415-23 [abstract].
  47. Verstuyft C, Strabach S, El-Morabet H, et al. Dipyridamole enhances digoxin bioavailability via P-glycoprotein inhibition. Clin Pharmacol Ther 2003;73:51-60.
  48. Ruike Z, Junhua C, Wenxing P. In vitro and in vivo evaluation of the effects of duloxetine on P-gp function. Hum Psychopharmacol 2010;25:553-9 [abstract].
  49. Mendell J, Zahir H, Matsushima N, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs 2013;13:331-42.
  50. Iwaki K, Sakaeda T, Kakumoto M, et al. Haloperidol is an inhibitor but not substrate for MDR1/P-glycoprotein. J Pharm Pharmacol 2006;58:1617-22.
  51. Akamine Y, Yasui-Furukori N, Uno T. Drug-drug interactions of P-gp substrates unrelated to CYP metabolism. Curr Drug Metab 2019;20:124-9 [abstract].
  52. Bui K, She F, Zhou D, et al. The effect of quinidine, a strong P-glycoprotein inhibitor, on the pharmacokinetics and central nervous system distribution of naloxegol. J Clin Pharmacacol 2016;56:497-505 [abstract].
  53. Perloff ES, Duan SX, Skolnik PR, et al. Atazanavir: effects on p-glycoprotein transport and CYP3A4 metabolism in vitro. Drug Metab Dispos 2005;33:764-70.
  54. Mercer SL, Coop A. Opioid analgesics and p-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem 2011;11:1157-64.

Cite this document as follows: Clinical Resource, P-glycoprotein Drug Interactions. Pharmacist’s Letter/Prescriber’s Letter. June 2020.


Related Articles